Vacunación contra el virus del papiloma humano

Autores/as

  • Wilson Martín Agüero Echeverría

Palabras clave:

Virus del papiloma humano, cáncer de cuello uterino, prevención, vacunación.

Resumen

El descubrimiento de que ciertas cepas de alto riesgo de los virus de papiloma humano causan cerca del 100% de cáncer cervical invasivo, disparó una revolución en la investigación de vacunas preventivas del cáncer en cuestión. La infección por el virus del papiloma humano (VPH) produce lesiones epiteliales en la piel genital y no genital, y en las membranas mucosas. A pesar que la mayoría de las infecciones son benignas y autolimitadas, la infección persistente puede llevar a una variedad de situaciones malignas. Gardasil es cuadrivalente, se produce en la levadura S. cerevisiae y contiene los tipos 16 y 18, que son los oncogénicos, además de los tipos 6 y 11, los cuales causan cerca del 90% de las verrugas genitales. Cervarix está formulada con un sistema adyuvante propio que induce una respuesta de anticuerpos significativamente mayor y más persistente que los mismos antígenos del virus formulados únicamente con hidróxido de aluminio. Ambas vacunas inducen una fuerte respuesta de anticuerpos en mujeres jóvenes, con virtualmente el 100% de seroconversión. Ninguna de las dos vacunas tiene efecto terapéutico. Es obligación del cuerpo médico de cada país, la evaluación de la eficacia de las campañas de vacunación, así como la eficacia a mediano plazo de la vacuna elegida por nuestro gobierno, dadas las diferencias en lo inherente a la duración de la protección, especialmente para cáncer de cérvix.

Métricas

Cargando métricas ...

Citas

1. Durst M, Gissman L, Ikenberg H, zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A. 1983;80(12):3812-15. [ Links ]

2. Walboomers JM, Jacobs MC, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12-19. [ Links ]

3. Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA. 1992;89(24):12180-84. [ Links ]

4. Orth G, Jeanteur P, Croissant O. Evidence for and localization of vegetative viral DNA replication by autoradiographic detection of RNA-DNA hybrids in sections of tumors induced by Shope papilloma virus. Proc Natl Acad Sci U S A. 1971;68(8):1876-80. [ Links ]

5. Favre M, Orth G, Croissant O, Yaniv M. Human papillomavirus DNA: physical map. Proc Natl Acad Sci U S A. 1975;72(12):4810-14. [ Links ]

6. Favre M, Breitburd F, Croissant O, Orth G. Chromatin-like structures obtained after alkaline disruption of bovine and human papillomaviruses. Virol. 1977;21(3):1205-59. [ Links ]

7. Favre M, Orth G, Croissant O, Yaniv M. Human papillomavirus DNA: physical mapping of the cleaveage sites of Bacillus amyloliquefaciens (BamI) and Haemophilus parainfluenzae (HpaII) endonucleases and evidence for partial heterogeneity. J Virol. 1977;21(3):1210-14. [ Links ]

8. zur Hausen H. Human genital cancer: synergism between two virus infections or synergism between a virus infection and initiating events? Lancet. 1982;2(8312):1370-72. [ Links ]

9. Gissmann L, Wolnik L, Ikenberg H, Koldovsky U, Schnürch HG, zur Hausen H. Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc Natl Acad Sci U S A. 1983;80(2):560-63. [ Links ]

10. Durst M, Gissmann L, Ikenberg H, zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A. 1983;80(12):3812-15. [ Links ]

11. Gravitt PE. Evidence and impact of human papillomavirus latency. Open Virol J. 2012;6:198-203. [ Links ]

12. Johnson HC, Elfstrom KM, Edmunds WJ. Inference of type-specific HPV transmissibility, progression and clearence rates: a mathematical modelling approach. PLoS One. 2012;7(11):e49614. [ Links ]

13. VU LT. High-risk and multiple human papillomavirus infections among married women in Can tho, Viet Nam. Western Pac Surveill Response J. 2012;3(3):57-62. [ Links ]

14. Lindsay F, Bloom D, Pransky S, Stabley R, Shick P. Histologic review of cidofovir-treated recurrent respiratory papillomatosis. Ann Otol Rhinol Laryngol. 2008;117(2):113-17. [ Links ]
15. Gravitt PE. The known unknowns of HPV natural history. J Clin Invest. 2011;121(12):4593-99. [ Links ]

16. Schiller J, Lowy D, Markowitz L. Human papillomavirus vaccine. En: Plotkin S, Orenstein W, Offit P (Eds). Vaccines: expert consult. 6th ed. USA: Elsevier; 2012.p.235. [ Links ]

17. Joshi H, Lewis K, Singharoy A, Ortoleva PJ. Epitope engineering and molecular metrics of immunogenicity: a computational approach to VLP-based vaccine design. Vaccine. 2013. [ Links ] pii: S0264-410X(13)01066-9. doi: 10.1016/j.vaccine.2013.07.075. (Epub ahead of print)

18. Granadillo M, Batte A, Lugo VM, Musacchio A, Bequet-Romero M, Betancourt L, et al. Expressin, purification and characterization of a recombinant fusion protein based on the human papillomavirus 16 E7 antigen. Springerplus. 2013;2(1):12. [ Links ] Epub 2013 Jan 12.

19. Einstein MH, Baron M, Levin MJ. Comparison of the immunogenicity of the human papillomavirus 16/18 vaccine and the HPV 6/11/16/18 vaccine for oncogenic non-vaccine types HPV-31 and HPV-45 in healthy women aged 18-45 years. Hum Vaccin. 2011;7(12):1359-73. [ Links ]

20. Chesson HW, Ekwueme DU, Saraiya M, Dunne EF, Markowitz LE. Estimates of the timing of reductions in genital warts and high grade cervica intraepithelial neoplasia after onset of human papillomavirus (HPV) vacciknation in the United States. Vaccine. 2013;31(37):3899-905. [ Links ]

21. Garcia-Sicilia J, Schwarz TF, Carmona A, Peters K, Malkin JE, Tran PM, et al. Immunogenicity and safety of hman papillomavirus 16/18 AS04-adjuvated cervical cancer vaccine coadministered with combined diphteria-tetanus-acellular pertussis-inactivated poliovirus vaccine to girls and young women. J Adolesc Health. 2010;46(2):142-51. [ Links ]

22. Leroux-Roels G, Haelterman E, Maes C, Levy J, De Boever F, Licini L, et al. Randomized trial of the immunogenicity and safety of the Hepatitis B vaccine given in an accelerated schedule coadministered with the human papillomavirus type 16/18 AS04-adjuvanted cervical cancer vaccine. Clin Vaccine Immunol. 2011;18(9):1510-18. [ Links ]

23. Pedersen C, Breindahl M, Aggarwal N, Berglund J, Oroszlán G, Silfverdal SA, et al. Randomized trial: immunogenicity and safety of coadministered human papillomavirus 16/18 AS04-adjuvanted vaccine and combined hepatitis A and B vaccine in girls. J Adolesc Health. 2012;50(1):38-46. [ Links ]

14. Wilkin T, Lee JY, Lensing SY, Stier EA, Goldstone SE, Berry JM, et al. Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in HIV-1 infected men. J Infect Dis. 2010;202(8):1246-53. [ Links ]

25. Parkin DM, Bray F. The burden of HPV-related cancers. Vaccine. 2006;24(Suppl 3): S11-25. [ Links ]

26. Badiu I, Geuna M, Heffler E, Rolla G. Hypersitivity reaction to human papillomavirus vaccine due to polysorbate 80. BMJ Case Reports. 2012; [ Links ] doi:10.1136/bcr.02.2012.5797.

27. Erlewyn-Lajeunesse M, Hunt LP, Heath PT, Finn A. Anaphylaxis as an adverse event following immunisation in the UK and Ireland. Arch Dis Child. 2012;97(6):487-90. [ Links ]

28. Naleway AL, Gold R, Drew L, Riedlinger K, Henninger ML, Gee J. Reported adverse events in young women following quadrivalent human papillomavirus vaccination. J Womens Health (Larchmt). 2012;21(4):425-32. [ Links ]

29. Kahn JA, Xu J, Kapogiannis BG, Rudy B, Gonin R, Liu N, et al. Immunogenicity and Safety of the Human papillomavirus 6, 11, 16, 18 Vaccine in HIV-Infected young women. Clin Infect Dis. 2013;57(5):735-44. [ Links ] doi: 10.1093/cid/cit319. Epub 2013 May 10.

30. Lamontagne DS, Thiem VD, Huong VM, Tang Y, Neuzil KM, et al. Immunogenicity of quadrivalent HPV vaccine among girls 11 to 13 years of age vaccinated using alternative dosing schedules: results 29 to 32 months after third dose. J Infect Dis. 2013 [ Links ]Jul 30. (Epub ahead of print).

31. Tota JE, Ramanakumar AV, Jiang M, Dillner J, Walter SD, Kaufman JS, et al. Epidemiologic Approaches to Evaluating the Potential for Human Papillomavirus Type Replacement Postvaccination. Am J Epidemiol. 2013 Aug 15;178(4):625-34. [ Links ] doi: 10.1093/aje/kwt018. Epub 2013 May 9.

32. Alonso L. Desarrollo de una vacuna profiláctica de segunda generación contra el papilomavirus humano. Medicina (Buenos Aires). 2011;71:261-66. [ Links ]

33. Fregnani JH, Carvalho AL, Eluf-Neto J, Ribeiro Kde C, Kuil Lde M, da Silva TA, et al. A school-based human papillomavirus vaccination program in barretos, Brazil: final results of demonstrative study. PLoS One. 2013;8(4):e62647. [ Links ] doi: 10.1371/journal.pone.0062647.

Descargas

Publicado

2017-10-22

Cómo citar

Agüero Echeverría, W. M. (2017). Vacunación contra el virus del papiloma humano. Pediatría (Asunción), 40(2), 167-174. Recuperado a partir de https://revistaspp.org/index.php/pediatria/article/view/105

Número

Sección

Artículos de Revisión